# -*- coding: utf-8 -*- from tensorflow_core.python.keras.layers.core import Dense, Dropout from tensorflow_core.python.keras.models import Sequential from tensorflow_core.python.keras.optimizer_v2.adam import Adam from datasets import load_house_dataset_data from train_and_evaluation import evaluate_regression_model, train_model import matplotlib.pyplot as plt __author__ = 106360 def generate_simple_regression_model(input_shape): model = Sequential() model.add(Dense(16, input_dim=input_shape, activation="relu")) # model.add(Dropout(0.25)) model.add(Dense(6, activation="relu")) # model.add(Dropout(0.25)) model.add(Dense(1, activation="sigmoid")) return model if __name__ == "__main__": (trainX,trainX_img, trainY, testX,testX_img,testY), normalizer = load_house_dataset_data(test_size=0.2,random_state=666) input_shape = trainX.shape[1] model = generate_simple_regression_model(input_shape) opt = Adam(lr=1e-3, decay=1e-3 / 200) model.compile(loss='mean_squared_error',metrics=['mean_absolute_percentage_error','mean_absolute_error','mean_squared_error'], optimizer=opt) model.summary() model = train_model(trainX, trainY, testX, testY,model,show_plot=True,epochs=500,batch_size=32) evaluate_regression_model(model,testX,testY,normalizer,show_plot=True) model.save('regression_model_data.h5')