diff --git a/tutorial_regression_data.ipynb b/tutorial_regression_data.ipynb index 981e223e2c5925a975da44b5ce2fd3d995880112..e85fa504bdea8ba8103914f0c08eb1cf47cc6fb8 100644 --- a/tutorial_regression_data.ipynb +++ b/tutorial_regression_data.ipynb @@ -51,7 +51,8 @@ "execution_count": 12, "outputs": [], "source": [ - "(trainX,trainX_img, trainY, testX,testX_img,testY), normalizer = load_house_dataset_data(test_size=0.2,random_state=666)\n", + "dataset_path = '/content/pilula_deep_learning/HousesDataset/Houses Dataset'\n", + "(trainX,trainX_img, trainY, testX,testX_img,testY), normalizer = load_house_dataset_data(test_size=0.2,random_state=666,path=dataset_path)\n", "input_shape = trainX.shape[1]\n" ], "metadata": { diff --git a/tutorial_regression_data_image.ipynb b/tutorial_regression_data_image.ipynb index d0c75d59e0689b8bbd3f177975802253cb943e3d..f1611745046be424c0c1ada886da6ff29988332c 100644 --- a/tutorial_regression_data_image.ipynb +++ b/tutorial_regression_data_image.ipynb @@ -50,7 +50,8 @@ "execution_count": 12, "outputs": [], "source": [ - "(trainX_data,trainX_img, trainY, testX_data,testX_img,testY), normalizer = load_house_dataset_data(test_size=0.2,random_state=666,type=DatasetType.Both)\n", + "dataset_path = '/content/pilula_deep_learning/HousesDataset/Houses Dataset'\n", + "(trainX_data,trainX_img, trainY, testX_data,testX_img,testY), normalizer = load_house_dataset_data(test_size=0.2,random_state=666,type=DatasetType.Both,path=dataset_path)\n", "trainX = [trainX_data,trainX_img['bathroom_img']]\n", "testX = [testX_data,testX_img['bathroom_img']]\n", "input_shape_data = trainX[0].shape[1]\n", diff --git a/tutorial_regression_image_finetune.ipynb b/tutorial_regression_image_finetune.ipynb index 9d207bc771b1476a965489edb89aa100d9fdadaf..2e05b8c733422b6adcebd7bebbf2ff09d517b20a 100644 --- a/tutorial_regression_image_finetune.ipynb +++ b/tutorial_regression_image_finetune.ipynb @@ -264,7 +264,8 @@ } ], "source": [ - "(trainX_data,trainX_img, trainY, testX_data,testX_img,testY), normalizer = load_house_dataset_data(test_size=0.2,random_state=666,type=DatasetType.Both)\n", + "dataset_path = '/content/pilula_deep_learning/HousesDataset/Houses Dataset'\n", + "(trainX_data,trainX_img, trainY, testX_data,testX_img,testY), normalizer = load_house_dataset_data(test_size=0.2,random_state=666,type=DatasetType.Both,path=dataset_path)\n", "trainX = trainX_img['bathroom_img']\n", "testX = testX_img['bathroom_img']\n", "input_shape = trainX.shape[1]\n", diff --git a/tutorial_regression_image_scratch.ipynb b/tutorial_regression_image_scratch.ipynb index 2cd79930ae9783001c912f7917b5c750e49d964f..0e5863c944782008df685f9c05fa149add0ee983 100644 --- a/tutorial_regression_image_scratch.ipynb +++ b/tutorial_regression_image_scratch.ipynb @@ -283,7 +283,8 @@ } ], "source": [ - "(trainX_data,trainX_img, trainY, testX_data,testX_img,testY), normalizer = load_house_dataset_data(test_size=0.2,random_state=666,type=DatasetType.Both)\n", + "dataset_path = '/content/pilula_deep_learning/HousesDataset/Houses Dataset'\n", + "(trainX_data,trainX_img, trainY, testX_data,testX_img,testY), normalizer = load_house_dataset_data(test_size=0.2,random_state=666,type=DatasetType.Both,path=dataset_path)\n", "trainX = trainX_img['frontal_img']\n", "testX = testX_img['frontal_img']\n", "input_shape = trainX.shape[1]\n",